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Abstract: Real-world data on HIV drug resistance (HIVDR) after transitioning to tenofovir
disoproxil fumarate/lamivudine/dolutegravir (TLD) are limited. We assessed HIVDR rates
and patterns in clients with virological failure (VF) after switching from an NNRTI-based
regimen to TLD. A cross-sectional study was conducted in Gaza, Mozambique (August
2021–February 2022), including adults on first-line ART for ≥12 months who transitioned
to TLD and had unsuppressed viral load (VL) ≥ 1000 copies/mL six months post-transition.
After three adherence counseling sessions, participants with VF underwent genotyping for
drug resistance mutations (DRMs) using the Stanford HIVdb Program. Of 717 participants
(median age 39.2 years, 70.7% female), 217 (30.2%) had VF, 193 (88.9%) underwent geno-
typing, with 183 (94.8%) successfully genotyped. Intermediate–high dolutegravir (DTG)
resistance was found in 19.6% (36/183). Unsuppressed VL before DTG transition was
independently associated with VF (aOR: 2.14). Resistance patterns included 33.3% (12/36;
95% CI: 14.6–46.3) to all three TLD drugs, 55.6% (20/36; 95% CI: 39.3–71.9) to DTG and
3TC, and 11% (4/36; 95% CI: 0.8–21.3) to DTG only. Major drug resistance mutations to
DTG included G118R (9.3%), R263K (6.6%), and Q148H/R/K (4.4%). This study highlights
the need to consider virologic status before transitioning PLHIV to TLD and suggests that
adherence counseling may not prevent resistance in those with unknown or prior VF.

Keywords: HIV; drug resistance; dolutegravir; Mozambique

1. Introduction
In 2019, the World Health Organization (WHO) updated the guidelines recommending

a transition from non-nucleoside reverse transcriptase (NNRTI) to integrase strand transfer
inhibitor (INSTI)-based antiretroviral treatment (ART) regimens specifically for low- and
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middle-income countries [1]. In many countries, particularly in sub-Saharan Africa, dolute-
gravir (DTG) in combination with two nucleoside reverse transcriptase inhibitors (NRTIs)
is now the standard of care for adults and children.

Aligned with WHO recommendations, in 2019 the Mozambique National HIV and STI
Control Program introduced DTG-based ART regimens for adults as first-line ART. Adults
on first-line ART with tenofovir disoproxil fumarate (TDF)/lamivudine (3TC)/efavirenz
(EFV) (TLE) were transitioned to TLD (TDF/3TC/DTG) irrespective of virologic status.
The introduction of TLD was followed by improved HIV-1 viral suppression among adults
defined as load <1000 copies/mL, from 55% in 2018 during the pre-DTG introduction to
89% after the rapid DTG transition roll-out in 2022 [2]. Despite these impressive gains
in suppression rates, there is still limited real-world data from sub-Saharan Africa about
the risk of emerging drug resistance to DTG, especially in settings where HIV drug re-
sistance testing is not routinely done. Prior to the introduction of INSTI in Mozambique,
a study on treatment-naïve patients found no major drug resistance mutations to INSTI,
indicating this class of ARVs could be optimal for people initiating treatment for the first
time. Likewise, data from West Africa and South Asia have also reported a low frequency
of major drug resistance of INSTI in pre-treatment patients, with rates below 2%. These
findings support the introduction of such ARVs in limited-resource countries to improve
treatment outcomes [3,4]. However, a study from Gabon has reported a higher frequency
of major drug resistance among treatment-naïve patients, estimated at 9%. Most of the
major drug resistance mutations were reported for the first generation INSTI, raltegravir
(RAL) and elvitegravir (EVG) [5], where information on the impact of such mutations on
second-generation INSTIs such as DTG, cabotegravir (CAB), and bictegravir (BIC) remains
scarce. Other studies published by Breneer et al. and Loosli et al. also showed that prior
NRTI mutations can increase the risk of acquired DTG drug resistance [6,7]. Moreover,
naturally occurring polymorphisms that vary within HIV subtypes have been associated
with different mutational pathways affecting the levels of INSTI resistance [8,9]. All these
studies only emphasize the need for more real-world data on resistance profiles following
the transition to a DTG-based regimen, particularly in sub-Saharan Africa where non-B
subtypes predominate.

Given the widespread use of DTG-based regimens and the limited routine use of
HIV drug resistance testing, we assessed the emergence of DTG resistance among highly
treatment-experienced patients experiencing virologic failure after transition to TLD in a
programmatic setting in Mozambique.

2. Materials and Methods
2.1. Study Design and Population

A cross-sectional study was conducted between July 2021 and February 2022 in seven
high-volume (defined as >2000 clients on ART) public health facilities in Gaza province,
southern Mozambique. We enrolled adult clients (age ≥ 18 years) with confirmed HIV-1
infection, history of receiving another first-line ART regimen that was non-DTG-based for
at least 12 months before switching to TLD, and who returned to the facility for a viral
load (VL) measure after (a) having had an initial VL ≥ 1000 copies/mL at least six months
after transitioning to TLD, (b) completing at least three enhanced adherence counseling
(EAC) sessions, and (c) allowing at least three months and no more than nine months
between VL blood draws. Virological failure (VF) was defined as two consecutive VL
measurements with VL ≥ 1000 copies/mL at least three months apart, after completing
at least three EAC sessions (see Supplementary Figure S1). Six months after transitioning
to the DTG-based ART regimen, HIV RNA testing was performed in accordance with the
Mozambique Ministry of Health guidelines.
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As part of routine service, health facility staff reached out by phone to clients with
unsuppressed VL who were due for a repeat VL test at least three months after an initial
unsuppressed VL. For clients who returned for a follow-up clinical appointment, eligibility
screening was performed, and written consent was obtained by the study team. At enrol-
ment, client-level information was abstracted from electronic files and/or medical charts at
each site. Unclear or missing data in the medical charts were reviewed or confirmed with
the participants at the time of enrolment. Socio-demographic data (age, sex, employment
status) and clinical laboratory data (ART regimen at initiation and currently; dates of ART
initiation and switch; VL results before and after the switch to TLD; enrolment in differ-
entiated service delivery models; and prior or current active TB infection) were collected
through a participant interview and/or by reviewing medical charts. In addition, socio-
behavioral aspects affecting ART adherence were collected for all enrolled participants
through a review of participants’ medical charts.

2.2. HIV-1 Viral Load Testing

A total of five milliliters (mL) of whole blood were drawn in ethylene diamine tetra-
acetic acid (EDTA) tubes from each participant and sent to two provincial molecular
biology laboratories located in Gaza province for HIV-1 VL testing. Buffy coat and plasma
were separated from remnant blood at the health facilities and/or VL testing laboratories
within six hours after sample collection. Plasma samples for enrolled participants were
registered on the Laboratory Information System (LIS) (Laboratory System Technologies
(Pty) Ltd., Johannesburg, South Africa), and in a separate database for the study. The HIV-1
VL was quantified using Abbott RealTime HIV-1 assay [10] on the Abbott m2000 sp/rt
System and COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 on the AmpliPrep/Cobas
TaqMan (CAP/CTM) (Roche Molecular Diagnostics, Branchburg, NJ, USA, product codes:
05212294190) according to the manufacturer’s instructions [11]. The limit of detection of
HIV-1 VL for Abbott was 40 copies/mL and 20 copies/mL for the CAP/CTM. After HIV-1
VL testing, remaining plasma from samples with a VL ≥ 1000 copies/mL was aliquoted in
a separated cryovial tube and frozen immediately at −70 ◦C to −80 ◦C until their shipment
to the Instituto Nacional de Saúde (INS) laboratories in Maputo for HIVDR testing.

2.3. HIVDR Sequencing and Analysis

HIVDR genotyping was conducted at the INS reference laboratory in Maputo, Mozam-
bique. HIV RNA was extracted from 140 µL of plasma using the QIAamp Viral RNA Mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions [12]. Extracted
RNA was immediately genotyped. The HIV-1 Genotyping Kit with Integrase (catalogue
number A55120, Thermo Fisher Scientific, Warrington, UK) was used to genotype the pro-
tease (PR), reverse transcriptase (RT), and integrase (IN) regions of the HIV-1 pol gene [13].
The genotyping result encompasses codons 6–99 of the PR region, codons 1–251 of the RT
region, and codons 1–288 of the IN region of the gene. Sequencing was performed using
Applied Biosystem (ABI) 3500 genetic analyser (Applied Biosystems, Foster City, CA, USA)
following the manufacturer’s instructions. Sequences were edited using Recall software
version 2 [14].

Final sequences were stored in the study database and submitted to the Stanford
HIVdb (https://hivdb.stanford.edu/hivdb/by-sequences/ accessed on the 22 June 2023)
version 8.9.1 to determine HIVDR mutations and drug susceptibility profiles. HIV-1
subtypes were determined by the REGA HIV-1 Subtyping Tool version 3 [15].

2.4. Statistical Analysis

We summarized participants’ demographic characteristics using descriptive statistics.
We determined the proportion of clients with (<1000 copies/mL) and without viral sup-

https://hivdb.stanford.edu/hivdb/by-sequences/
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pression (≥1000 copies/mL) on the TLD ARV regimen. Odds ratios and associated 95%
confidence intervals were used to summarize the strength and direction of association with
factors associated with VF and with presence of INSTI drug resistance mutations after DTG
transition. Individual drug susceptibility was summarized using proportion by ARV group
class. The statistical analysis was conducted using Stata version 17.0.

3. Results
3.1. Study Design and Population

Of the 1312 eligible participants, 1106 (84.3%) were screened and 717 (64.8%) were
enrolled in the study. Out of the enrolled participants, 499 (69.6%) achieved subsequent
viral load (VL) suppression after three EAC sessions, while the remaining 216 (30.3%) did
not (Figure 1). One participant was excluded from the final analysis due to missing docu-
mentation of their second viral load measurement. The median age was 39.2 years (IQR:
32.4–46.6), and 506 (70.7%) participants were female; more detailed socio-demographic
characteristics are described in Table 1. Among the enrolled participants, 341 (47.5%) had
pre-DTG suppressed VL, 162 (22.5%) had no VL test results before the transition, and the
remaining 214 (29.8%) had unsuppressed VL pre-DTG. For most participants (78.5%), the
initial treatment regimen was TLE, the median time on ART at the time of DTG transition
was 5.2 years (IQR: 2.8–7.9), and the time on DTG was 19.7 months (IQR: 16.4–22.8). The
median (IQR) plasma HIV RNA level among the 214 clients with recorded VL test results,
who were viremic at the time of the switch, was 17,018 copies/mL (IQR: 4636–62,109). In
addition, the median time between DTG initiation and first VL (unsuppressed) after the
switch was 15.9 months (IQR: 12.3–18.8).
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Table 1. Clinical and demographic characteristics among participants by virological status during subse-
quent viral load testing after transition to dolutegravir (DTG), Gaza province, Mozambique, 2021–2022.

Characteristics Virologic Status at Subsequent VL After DTG
<1000

Copies/mL
n (%)

≥1000
Copies/mL

n (%)

Total
N (%)

Virologic status at subsequent
VL after DTG, copies/mL

<1000 499 100.0 0 0.0 499 69.7
≥1000 0 0.0 217 100.0 217 30.3

Sex
Female 348 69.7 158 72.8 506 70.7
Male 151 30.3 59 27.2 210 29.3

Age group, years
18–24 45 9.0 21 9.7 66 9.2
25–39 202 40.5 124 57.1 326 45.5
40–59 204 40.9 67 30.9 271 37.8
60+ 48 9.6 5 2.3 53 7.4

Median age, years 41.6 (12.4) 37.3 (10.3) 40.3 (11.9)
Current employment status

Unemployed 313 63.9 135 64.6 448 64.1
Employed 177 36.1 74 35.4 251 35.9

Past history of tuberculosis
No 462 92.6 192 88.9 654 91.5
Yes 37 7.4 24 11.1 61 8.5

Tuberculosis currently active
No 492 98.6 213 98.6 705 98.6
Yes 7 1.4 3 1.4 10 1.4

Currently in differentiated
care models

No 96 19.2 53 24.4 149 20.8
Yes 403 80.8 164 75.6 567 79.2

Virologic status before switching
to DTG, copies/mL

<1000 257 66.9 83 48.8 340 61.4
≥1000 127 33.1 87 51.2 214 38.6

Initial ART regimen
AZT + 3TC + EFV 3 0.6 0 0.0 3 0.4
AZT + 3TC + NVP 96 19.2 33 15.2 129 18.0
D4T + 3TC + EFV 5 1.0 2 0.9 7 1.0
D4T + 3TC + NVP 13 2.6 0 0.0 13 1.8
TDF + 3TC + EFV 382 76.6 182 83.9 564 78.8

Abbreviations: DTG, dolutegravir; AZT, zidovudine; 3TC, lamivudine; EFV, efavirenz; NVP, nevirapine;
D4T, stavudine; TDF, tenofovir; n, number.

3.2. Virologic Failure After DTG Transition

Figure 2 shows the change in log VL between the first VL after TLD initiation and
the subsequent VL separated by three EAC sessions. In general, the mean decrease for all
participants was 2.27 log. For the participants that failed TLD (n = 217), the average mean
increase was 0.05 log (SD +/− 0.75), and for the participants with suppressed VL, the aver-
age decrease was 2.98 log (SD + 1.41) (see Supplementary Table S1). Compared to PLHIV
with suppressed VL before DTG-based treatment transitions, those with unsuppressed VL
had higher odds of virologic failure (aOR: 2.14, 95% CI: 1.42–3.20), whereas those aged
60 years and above had 70% lower odds of VF when compared to those aged 18–24 years
(aOR: 0.30, 95% CI: 0.09, 0.99), indicating a protective effect (Table 2). The prevalence of
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INSTI resistance mutations after DTG transition was substantially lower in those for whom
the initial ART regimen was TDF + 3TC + EFV (OR: 0.16, 95% CI: 0.05, 0.48) (Table 3).
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Table 2. Demographic and clinical characteristics associated with virologic failure after DTG transi-
tion, Gaza province, Mozambique, 2021–2022 Abbreviations: log = logarithm; DTG = dolutegravir;
VL = viral load.

Characteristics aOR 95% CI p-Value

Sex
Female 1.00
Male 0.96 0.59, 1.56 0.870

Age group, years
18–24 1.00
25–39 1.29 0.67, 2.48 0.443
40–59 0.67 0.34, 1.32 0.245
60+ 0.30 0.09, 1.00 0.049

Current employment status
Unemployed 1.00

Employed 1.25 0.79, 1.97 0.342
History of tuberculosis

No 1.00
Yes 1.42 0.72, 2.80 0.315

Tuberculosis currently active
No 1.00
Yes 0.78 0.18, 3.32 0.734

Currently in differentiated care models
No 1.00
Yes 0.68 0.42, 1.09 0.112

Virologic status before switching
to DTG, copies/mL

<1000 1.00
≥1000 2.14 1.42, 3.20 0.000

Initial ART regimen
AZT + 3TC + EFV 1.00



Pathogens 2025, 14, 48 7 of 13

Table 2. Cont.

Characteristics aOR 95% CI p-Value

AZT + 3TC + NVP 0.74 0.43, 1.28 0.277
D4T + 3TC + EFV 1.69 0.29, 9.90 0.560
D4T + 3TC + NVP 1.00
TDF + 3TC + EFV 1.00

Abbreviations: aOR, adjusted odds ratio; CI, confidence interval; DTG, dolutegravir; AZT, zidovudine;
3TC, lamivudine; EFV, efavirenz; NVP, nevirapine; D4T, stavudine; TDF, tenofovir.

Table 3. Factors associated with integrase inhibitor (IN) drug resistance mutations after DTG transi-
tion, Gaza province, Mozambique, 2021–2022.

Characteristics OR 95% CI p-Value

Sex
Female 1.00
Male 1.31 0.40, 4.30 0.655

Age group, years
18–24 1.00
25–39 0.52 0.12, 2.22 0.378
40–59 0.70 0.14, 3.59 0.673
60+ 2.01 0.08, 52.60 0.676

Current employment status
Unemployed 1.00

Employed 0.54 0.17, 1.75 0.302
Past history of tuberculosis

No 1.00
Yes 0.48 0.10, 2.40 0.373

Currently in differentiated care models
No 1.00
Yes 0.63 0.23, 1.74 0.373

Virologic status before switching
to DTG, copies/mL

<1000 1.00
≥1000 1.70 0.68, 4.26 0.260

Initial ART regimen
AZT + 3TC + NVP 1.00
D4T + 3TC + EFV 1.00
TDF + 3TC + EFV 0.16 0.05, 0.48 0.001

Abbreviations: OR, odds ratio; CI, confidence interval; AZT, azidothymidine (zidovudine); 3TC, lamivudine;
TDF, tenofovir; EFV, efavirenz; NVP, nevirapine; D4T, stavudine.

3.3. HIV Drug Resistance Mutation and Susceptibility Profile

Of the participants that experienced VF, intermediate- to high-level resistance to DTG
was observed in 36 (19.6%; 95% CI: 13.9–25.4), and no low-level DT resistance was observed.
Intermediate and high levels of resistance were observed in 11 (6%) and 25 (13.7%) of the
study participants, respectively. Major integrase resistance mutations G118R (17, 9.3%),
R263K (12, 6.6%), and Q148H/R/K (8, 4.4%) were detected. Other INSTI mutations
such as E138K/A/T (22, 12.0%), T66A/I/K (13, 7.1%), G140S/A/C (5, 2.7%), N155H
(4, 2.2%), and E92Q (1, 0.5%) were also detected. Resistance to DTG was more common
in individuals who had no VL results available before the transition [37.5% (95% CI:
24.8–57.9)] when compared with those who had unsuppressed [17.8% (95% CI: 9.8–28.5)] or
suppressed VL before transitioning to DTG-based ART regimen, [11.4% (95% CI: 5.1–21.3)]
(see Supplementary Figure S2). Among the participants with DTG resistance, 33.3% (12/36)
(95% CI: 14.6–46.3) showed resistance to all three ARVs in the TLD regimen, 55.6% (20/36)
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(95% CI: 39.3–71.9) to DTG and 3TC, and 11% (95% CI: 0.8–21.3) only to DTG. None of the
participants showed combined resistance to DTG and tenofovir alone.

We also detected resistance mutations for NNRTIs, NRTIs, and PIs in 57.9% (n = 106),
30.1% (n = 55), and 3.8% (n = 7) of the participants, respectively. Further description of
predicted drug resistance susceptibility can be found in Figure 3. Of note, the common NRTI
mutations M184V and K65R were detected, and high-level resistance to 3TC and tenofovir
(TDF) was observed in 3.3% (n = 6) and 24.6% (n = 45), respectively. The distribution of all
mutations is presented in Figure 3.
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Figure 3. Panel (A) Drug resistance mutations to the different classes of ARVs found among the
participants experiencing virological failure that were successfully sequenced (n = 183). Panel
(B) Level of resistance to the different classes of ARVs among the participants experiencing virological
failure that were successfully sequenced (n = 183). Mutation profiles and susceptibility predictions
were determined using Stanford HIV Drug Resistance Database Version 8.8.0. Proportion of sequences
with DRMs to the different classes of ARVs are divided into nucleoside reverse transcriptase inhibitors
(NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and integrase strand transfer
inhibitors (INSTIs) (Panel (A)). Individual predicted susceptibility for each antiretroviral (ARV) was
categorized according to high-level, intermediate-level, and low-level resistance, and susceptibility
(Panel (B)). Abbreviations: ARV, antiretroviral therapy; NRTI, nucleoside reverse transcriptase
inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; INSTI, integrase strand transfer
inhibitor; ABC, abacavir; AZT, azidothymidine (zidovudine); D4T, stavudine; FTC, emtricitabine;
3TC, lamivudine; TDF, tenofovir; DOR, doravirine; EFV, efavirenz; ETR, etravirine; NVP, nevirapine;
RPV, rilpivirine; ATV, atazanavir; DRV, darunavir; LPV, lopinavir; TPV, tipranavir; BIC, bictegravir;
CAB, cabotegravir; DTG, dolutegravir; EVG, elvitegravir; RAL, raltegravir.



Pathogens 2025, 14, 48 9 of 13

With regards to the subtypes C, A, D, and G estimated at 96.7% (n = 177), 1.6 (n = 3),
1.1 (n = 2), and 1% (n = 1) were observed in our participants.

4. Discussion
Our study focused exclusively on a treatment-experienced population with confirmed

VF, which may explain why our estimates for dolutegravir resistance are higher than those
seen in other studies that featured primarily treatment-naïve populations [16–18]. The
observed levels of resistance to DTG in this sub-population suggest that management
strategies may need to differ from those applied in populations receiving TLD as an initial
regimen, potentially necessitating a regimen switch.

Several factors may contribute to the high level of DTG resistance in the people
living with HIV that transitioned from the previous regimen to TLD. Firstly, the study by
Siedner et al. [19] conducted in South Africa suggests that the risk of DTG resistance is
higher in those with previously reported NNRTI failure, which might explain the high level
of NNRTI resistance observed in almost half (50%) of the participants with VF. Secondly,
our results show that unsuppressed VL prior to TLD switch was strongly associated
with VF but not DTG resistance, suggesting that virologic status prior to the transition to
TLD seems to confer an additional risk for poor treatment outcomes. Lastly, only three
(2.3%) individuals showed dual resistance to 3TC and TDF, with the risk of developing
functional DTG monotherapy [6]. This is similar to a study conducted in Mozambique
that also reported increased acquired resistance levels to the NRTI profile before TLD
was implemented [20]. Still, there are contradictory data from different studies regarding
the efficacy of DTG-based regimens in patients who transitioned from a non-DTG-based
regimen to TLD. In a study from Lesotho, DTG resistance emergence was estimated at 8%
in patients who transitioned from an NNRTI-based regimen [21], whereas from Uganda in
the Prospective Observational Cohort Study (DISCO), no DTG resistance at 48 weeks after
the transition was observed [22].

Moreover, evidence on how the efficacy of a DTG-based regimen is affected by pre-
existing NRTI resistance [23] in our study and in patients experiencing VF is also still
not well understood. Nevertheless, the presence of NRTI resistance was not associated
with DTG resistance. Considering these factors, and in line with the recommendations by
Murphy et al. [24], who discuss DTG resistance in the context of African programmatic
settings, there is a need for more prospective research to better understand the impact of pre-
existing NRTI resistance mutations and other risk factors associated with the development
of DTG resistance. Furthermore, such studies must focus on determining the optimal
patient management care strategies that can include changes in regimens with anchored
PI-boosted regimens for affected patients.

The proportion of individuals that achieved VL suppression after intensive counseling
was 69.5% (n = 499), showing the positive impact that adherence interventions can have
on treatment outcomes. Nonetheless, 80.4% of our participants with persistent VF had no
mutations associated with resistance to DTG, TDF, and 3TC, suggesting adherence, rather
than drug resistance, is the primary issue, which could potentially be due to inadequate
access to healthcare facilities, stigma, and discrimination common in resource-limited
settings [25]. These findings highlight adherence as a major limitation on ART efficacy in
the African context, and as suggested by the previous studies, long-acting formulations
may be an option to overcome this issue [26,27].

Further, we also observed a very low level of resistance to PIs given the high ge-
netic barrier of this class of ARVs [28], which are only available in second-line regimens
in Mozambique and other resource-limited settings. Similar to some countries in the
same region, E138K/A/T, G118R, R263K, and Q148H/R/K were the most frequent INSTI
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DRMs [29]. Notably, the major mutation G118R previously described as a DTG resistance
pathway in subtype C [30], also detected in Botswana [31], was also reported at a high
rate (10.2%) here. The secondary mutation E138K/A/T in combination with G118R was
observed in three participants, previously identified in subtype C [32] and not subtype
B in a culture drug selection study demonstrating increased resistance to DTG. Similarly,
mutations R263K and Q148H, known to be frequent in subtype B [33] after exposure to
raltegravir (RAL), have also been reported in East Africa [29,33], where subtype D/A is
common, and were also observed in subtype C infections in our study. Our data highlight
the critical need to closely monitor INSTI DRMs, particularly for clients on DTG treat-
ment, to ensure the ongoing success of the transition to DTG-based first-line regimens in
sub-Saharan Africa.

Our study has some limitations. Firstly, the inclusion criteria were limited to treatment-
experienced populations and should not be extrapolated to populations of all patients
experiencing VF while on DTG. Secondly, the Sanger-based sequencing technology can
miss 30% or more DRMs, which could potentially further underestimate the true DRM
rate among this study population [34]. Thirdly, we only sequenced the pol region of HIV;
evidence of mutations outside the integrase that can be associated with DTG resistance
has been reported [35,36]. Fourthly, we lacked data on the number of participants with
repeat unsuppressed viral loads who achieved suppression, and long-term outcomes such
as mortality were not evaluated due to study design constraints. Fifthly, the lack of pre-
existing resistance data has limited our understanding of the real impact of major NRTI
mutations on subsequent VF after switching to TLD. Likewise, we were unable to determine
DRMs in participants with low-level viremia; as such, the emergence of archived major
mutations may have been underestimated. Lastly, our study was only conducted in one
province of Mozambique, Gaza, which has the highest prevalence of HIV in Mozambique
(20.5%) [37] as well as dynamic circular migration patterns; thus, the results cannot be
generalized for the whole country, emphasizing the need for similar studies in other regions
of Mozambique, including other population groups such as children and pregnant women,
to provide a more comprehensive understanding of DTG resistance patterns.

5. Conclusions
Our study highlights that almost 20% of sequenced specimens demonstrated

intermediate- to high-level DTG resistance among patients with unsuppressed VL on
DTG-based ART after switching from a non-DTG-based first-line ART regimen. The find-
ings of this study underscore that most patients with a high viral load should continue to
receive a DTG-based regimen but may need strengthened psychosocial support to improve
re-suppression rates. Among treatment-experienced patients, better decision tools may help
identify PLHIV that harbors resistance and that would benefit from individual drug resis-
tance testing and, eventually, from a drug switch; although history of viral non-suppression
was not independently associated with drug resistance, the higher rates observed suggest
this may be a criterion to consider for such a decision. As the level of acquired drug resis-
tance for DTG increases as the uptake among PLHIV increases, transmitted DTG resistance
in treatment-naïve patients may rise in the long term.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pathogens14010048/s1, Figure S1: Graphical represen-
tation of participant selection, sample collection, and laboratory testing; Figure S2: Dolutegravir
(DTG) resistance when stratifying by pre-DTG viral load (VL) results divided into unsuppressed,
suppressed, and no VL result pre-DTG; Table S1: Log HIV-1 viral load (VL) change after tenofovir
fumarate/lamivudine/dolutegravir (TLD) initiation and subsequent VL separated by three enhanced
adherence counseling sessions.
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